摘要

为了解决短文本数据流的动态聚类问题,提出动态的狄利克雷多项混合(dynamic Dirichlet multinomial mixture,DDMM)模型。模型能够很好地捕获短文本数据流中主题随时间变化而变化的动态过程,同时考虑到已有历史主题和新主题之间的关系,能够对主题继承性的强弱进行调整,从而增大新主题产生的可能。在Gibbs采样过程中,能够自动估算出聚类个数。模拟数据和真实数据上的试验表明,DDMM模型是有效的。同时将提出的方法和传统动态聚类方法进行对比,结果表明DDM M模型能够进行有效的文本动态聚类,并且聚类效果表现良好。