摘要
针对信号子空间语音增强算法中的子空间选择和线性滤波器中噪声功率谱和拉格朗日乘子的估计问题,用高斯、拉普拉斯和伽玛模型描述了语音的分布,提出了利用目标语音概率最大化来确定信号子空间维度的方法。在噪声子空间上,利用条件概率估计出噪声功率谱。接着,为了合理地折中增强语音中的残余噪声和语音畸变,提出了一种基于人耳听觉掩蔽效应的拉格朗日乘子估计方法。实验证明,在多项语音质量评价指标上,所提算法都取得了更好的结果。所提的信号子空间算法比传统的信号子空间算法更有效地消除了噪声,使得恢复的语音具有更好的质量。
-
单位中国科学院自动化研究所; 模式识别国家重点实验室