摘要

支持向量机(SVM)的参数取值决定了其学习性能和泛化能力。对此,将SVM参数的选取看作参数的组合优化,建立组合优化的目标函数。采用蚁群算法(ACA)来搜索最优目标函数值。ACA是一种优化搜索方法,具有较强的鲁棒性、优良的分布式计算机制。仿真表明,ACA是选取SVM参数的有效方法,应用到函数逼近时有优良的性能。

全文