摘要

针对基于主动微波遥感途径开展广域土壤湿度反演的过程中,对植被和土壤粗糙度影响难以进行有效估算的问题,该研究联合多极化雷达和原始多光谱数据源,提出一种改进的卷积神经网络(Improved Convolutional Neural Network,ICNN)方法。该方法采用不同尺寸的卷积核对原始变量进行一维卷积运算,自适应提取能反映测区土壤湿度时空差异的高级特征维;同时,去除了传统卷积神经网络结构中的池化层,保证提取的特征信息完整。试验结果表明,在边长超过100 km的四川盆地研究区域内,模型预测值与样本数据相关系数达到0.934,预测值偏差服从均值趋近于0的正态分布,均方根误差为1.45%,误差分布范围小于6.3%,结果具有较高的可靠性。该方法可为精准农业、旱涝灾害等领域的广域监测研究提供一定的支撑。