摘要

变化分析与探测是跨比例尺地图数据更新的核心问题之一。以往研究主要关注时间维上地理实体时空演化引起的地图目标变化,甚至将地图目标变化等同于地理实体真实变化,忽略了尺度维上由地图综合导致的表达变化。本文以居民地数据为例,从表层形式和深层缘由对跨比例尺新旧地图数据间的目标变化进行深入分析。在此基础上,引入机器学习领域的决策树方法构建变化信息识别模型。该模型的目标是判别时态变化和表达变化两种类型,从而提取用于更新小比例尺地图数据的真正变化信息。结合广州市多比例尺地图数据库更新任务及实际数据进行验证,结果显示设计的变化探测模型可以达到90%以上的整体精度。