摘要
针对现有稀土元素组分含量模型具有离线、时滞大、抗干扰能力弱等问题,提出一种改进的GRA-即时学习算法(GRA-JITL-LSSVM)建立稀土萃取过程组分含量在线检测模型.首先,采用灰色关联分析方法(GRA)分析输入输出变量之间的变化趋势和关联程度,采用哈希表确定学习集大小,确保数据相似度信息的完整性和学习集的合理性,据此建立最小二乘支持向量机(LSSVM)模型,并引入数据库更新准则,提高模型的抗干扰能力;然后,为了保证GRA-JITL-LSSVM模型参数的全局最优,提出一种带有停滞回溯策略的遗传算法(SBS-GA),并对SBS-GA的收敛性进行分析验证;最后,通过镨/钕萃取现场数据进行仿真实验,结果表明所提出SBS-GA算法能够保证寻优参数的全局解,所提出的GRA-JITL-LSSVM实时性高、预测精度好,可用于稀土萃取生产现场元素组分含量的在线检测.
-
单位华东交通大学; 江西省先进控制与优化重点实验室