摘要

不等式约束部分变量含误差(partial errors-in-variables, PEIV)模型目前主要采用线性化方法和非线性规划类算法,前者计算效率较低,后者基于最优化理论,计算复杂,未能与经典平差理论建立联系,难以在测量实际中推广。在整体最小二乘准则下,根据最优解的Kuhn-Tucker条件,将不等式约束整体最小二乘解的计算转化为二次规划问题,并提出改进的Jacobian迭代法求解二次规划。所提方法不需要对观测方程线性化,与经典最小二乘法具有相同的形式,易于编程实现。数值实例表明,所提方法形式简洁,具有良好的计算效率,是经典最小二乘平差理论的有益拓展。

全文