为快速准确地检测出混凝土桥梁上的裂缝,提出一种基于改进卷积神经网络的混凝土桥梁裂缝图像识别方法。为提高图像质量,先采用熵阈值法处理图像,后从3个方面对传统的卷积神经网络进行改进:设计双通道结构的卷积神经网络,充分提取图像特征;改进的传统的Relu激活函数,避免模型欠拟合;使用支持向量机(SVM)替代Softmax分类器,提高计算效率。桥梁裂缝图像识别实验表明,改进后的卷积神经网络对桥梁裂缝识别率显著提高,平均识别率高达96.26%,训练时间632s,可运用于实际桥梁修复检测中。