摘要
实体关系抽取作为文本挖掘和信息抽取的核心任务,是知识图谱构建过程中的关键一环。然而人工建立大规模有标签的数据耗时耗力。使用小样本学习来进行关系抽取,仅仅需要少量样本实例就能使模型学会区分不同关系类型的能力,从而缓解大量无标签数据带来的标注压力。本文对中文关系抽取数据集FinRE进行了重构使之适用于少样本学习,并引入了语义关系网络HowNet对实体进行更为精确的语义划分,并在此基础上使用双重注意力机制提高句子编码质量,从而提高了模型在面对噪声数据时的效能,减轻了长尾关系的影响。使用本文的方法在该中文数据集进行了评估,与原始原型网络相比,基于句子级别与实体级别的注意力机制的原型网络在抽取准确率上提升了1%~2%的性能。
- 单位