本文研究二维不可压缩Navier-Stokes-Cahn-Hilliard系统.假设初值(u0,φ0)∈Hs(R2)×Hs(R2)并且divu0=0,其中s∈N且s> 1,通过利用能量估计的方法证明该系统存在唯一的全局光滑解.此外,采用Fourier分离方法,研究该系统光滑解及其高阶空间导数的L2-衰减估计.