摘要

本文在可修M/M/1/N排队系统中引入了启动时间、工作休假和工作故障策略.在该系统中,服务台在休假期间不是完全停止工作,而是处于低速服务状态.设定服务台在任何时候均可发生故障,当故障发生时立刻进行维修.且当服务台在正规忙期出现故障时,服务台仍以较低的服务速率为顾客服务.服务台的寿命时间和修理时间均服从指数分布,且在不同的时期有不同的取值.同时,从关闭期到正规忙期有服从指数分布的启动时间.本文建立此模型的有限状态拟生灭过程(QBD),使用矩阵几何方法得到系统的稳态概率向量,并应用基本阵和协方差矩阵理论,计算出系统稳态可用度、系统方差、系统吞吐率、系统稳态队长及各系统稳态概率等系统性能指标.同时,通过数值实验对各系统参数对系统性能的影响进行了初探.文中的敏感性分析体现了这种方法的有效性和可用性.实验表明,文中提出的模型,可有效改善仅带有工作休假或工作故障策略排队模型的系统性能.