摘要
应用支持向量机对北极声速剖面进行分类,特征量提取是关键。该文采用一种基于经验模态分解的改进变分模态分解算法,以准确提取声速剖面特征量。算法首先对声速剖面信号进行经验模态分解,依据最大类间方差原则划分各分量边际谱主频带,以相似度作为最小分解层数判断标准,获得最小分解层数,进行变分模态分解。对北极区海水声速实测数据(信号)处理表明,该方法可有效提取信号经验模态分解各分量的希尔伯特边际谱特征,进行支持向量机分类,实现对北极海域声速剖面的分类识别,解决以往人工分类耗时久的问题。
- 单位
应用支持向量机对北极声速剖面进行分类,特征量提取是关键。该文采用一种基于经验模态分解的改进变分模态分解算法,以准确提取声速剖面特征量。算法首先对声速剖面信号进行经验模态分解,依据最大类间方差原则划分各分量边际谱主频带,以相似度作为最小分解层数判断标准,获得最小分解层数,进行变分模态分解。对北极区海水声速实测数据(信号)处理表明,该方法可有效提取信号经验模态分解各分量的希尔伯特边际谱特征,进行支持向量机分类,实现对北极海域声速剖面的分类识别,解决以往人工分类耗时久的问题。