针对传统DBSCAN算法对高维数据集聚类效果不佳且参数的选取敏感问题,提出一种新的基于相似性度量的改进DBSCAN算法.该算法构造了测地距离和共享最近邻的数据点之间的相似度矩阵,克服欧式距离对高维数据的局限性,更好地刻画数据集的真实情况.通过分析数据的分布特征来自适应确定Eps和MinPts参数.实验结果表明,所提GS-DBSCAN算法能够有效地对复杂分布的数据进行聚类,且在高维数据的聚类准确率高于对比算法,验证了算法的准确性和可行性.