摘要
异常行为识别在智能监控领域有广泛的应用前景。本文提出一种基于双通道C3D(Convolutional 3D,三维卷积)的行为识别方法,对打架、向下抛物、摔倒、跨越警戒线这四类异常行为以及走路、跑步、工作这三类正常行为进行识别。该方法的一个通道通过提取视频的RGB图像送入C3D网络来获取静态特征;另一个通道通过提取视频的光流图像送入C3D网络来获取动态特征;最后,利用双通道网络在卷积层融合、全连接层融合、混合融合的方法将静态特征与动态特征相结合,对比实验结果表明,最优识别率达到97.7564%,证明了该网络结构在基建现场应用场景中的有效性和可行性。
-
单位通信与信息工程学院; 西安科技大学