摘要

针对传统红外与可见光图像融合算法中存在的目标模糊、细节丢失、算法不稳定等问题,提出了一种基于模糊C均值聚类(Fuzzy C-means, FCM)与引导滤波的红外与可见光图像融合方法。原图像经过非下采样剪切波变换(Nonsubsampled Shearlet Transform, NSST)后对低频子带进行引导滤波增强,再利用FCM与双通道脉冲发放皮层模型(Dual Channel Spiking Cortical Model, DCSCM)结合对高低频子带进行融合,最后经NSST逆变换得到融合图像。实验结果表明,本文算法稳定,主观评价上所得融合图像目标明确,细节保留较为完整,客观评价上在标准差、互信息、平均梯度、信息熵和边缘保留因子等评价标准中表现优良。