针对传统冠状动脉分割中需要人为干预且效率低,以及现有深度学习分割方法准确率低的问题,本研究提出一种基于多尺度集成的分割模型。该模型设计了一种新的由粗到细的分割框架,通过结合全尺度的粗分割与局部多尺度的细分割,进一步提升分割的准确率。实验结果表明,在Dice相似性系数上可达到82.96%,优于其他常规的深度学习方法。该模型也为其他管状器官的分割提供了新的思路。