摘要
针对低光照环境下现有的目标检测算法普遍存在检测精度较低的问题,提出一种改进YOLOv5的双通道低光照图像目标检测算法YOLOv5_DC。首先,通过伽马变换和叠加高斯噪声的方法合成低光照图像,扩充数据集,提高模型的泛化能力;其次,提出特征增强模块,引入通道注意力机制,融合增强图像和原始图像的低级特征,抑制噪声特征的影响,改善网络的特征提取能力;最后,在颈部网络中加入特征定位模块,增加特征图在目标区域的响应值,使网络更关注目标区域,提高网络的检测能力。实验结果表明,本文提出的YOLOv5_DC算法实现了更高的检测精度,在低光照图像目标检测数据集ExDark*上mAP0.5达到71.85%,较原始的YOLOv5算法,提高了1.27%。
- 单位