摘要
针对传统协同过滤推荐算法推荐精度较差的问题,提出一种融合多层混合相似度与信任机制的协同过滤算法。引入模糊集隶属函数用于修正用户的评分相似度,提取用户兴趣向量计算用户对不同类型项目的偏好程度,将二者动态融合得到用户混合相似度,将用户的混合相似度与信任度进行自适应模型融合。将算法应用于MovieLens公用数据集,实验结果表明,在数据较为稀疏时,改进算法相较于改进的余弦相似度算法,准确度提升约6.3%,与部分改进算法相比,推荐精度也有一定程度的提升。
-
单位通信与信息工程学院; 重庆邮电大学