摘要
针对皮带秤在使用中难以保持标称计量精度的缺点,提出将过程神经网络引入皮带秤动态称重误差的补偿中。将动态称量过程中皮带秤单位长度上的重量、皮带速度、皮带垂度变化作为模型输入,设计了应用于皮带秤动态称重误差研究的单隐层过程神经网络误差反传播学习算法,利用Matlab软件对算法模型进行训练和测试,模型经过149次学习优化达到网络精度要求,测试组误差为1%,较使用网络前的原误差明显降低,验证了算法的可行性和有效性。
-
单位南京理工大学; 江苏省计量科学研究院