摘要
针对传统的辐射源个体识别方法在低信噪比环境下识别性能不佳的问题,提出了一种空中目标辐射源的个体识别方法,该方法利用经验模态分解和变分模态分解得到信号不同频率的模态分量,将各模态分量的多尺度排列熵作为特征,利用主成分分析对数据进行降维,并采用支持向量机分类器进行辐射源个体识别。仿真结果表明,该方法对相位噪声、频率漂移以及谐波失真等细微特征的识别性能明显优于传统方法,并具有良好的抗噪性。
-
单位综合业务网理论及关键技术国家重点实验室; 西安电子科技大学