摘要

针对推文中恶意软件名称识别任务存在的文本简短、非正式、实体类别单一以及实体歧义等问题,提出了一种基于BERT-BiLSTM-Self-attention-CRF的实体识别方法,以实现推文中恶意软件名称的自动识别。在BiLSTM-CRF模型的基础上,利用BERT模型编码单词语境信息,提升词嵌入的上下文语义质量,增强原有模型的语义消歧能力;同时,借助Self-attention机制学习单词间关系和句子结构特征,利用加权表征帮助单一类别实体的解码,以提升恶意软件名称实体的识别效果。通过构建包含恶意软件名称实体的推文标记数据集进行实验测试,结果表明,提出的方法可以实现更好的性能,其精确率、召回率、F1值分别为86.38%,84.73%,85.55%,相较于基线模型BiLSTM-CRF,F1值提升了12.61%。