摘要

基于交通网络的实际时空拓扑,提出一种特征融合图注意网络(FF-GAT)模型融合节点获取的多种交通状态信息,预测高速公路交通流。首先,分析节点的车速、交通流和占有率之间的关联特征,并基于多变量时间注意力机制,将车速、交通流和占有率之间的关系融入注意力机制,从而捕捉交通流的不同时间之间的动态时间相关性;其次,将节点划分为不同的邻域集,并通过特征融合图注意网络(GAT)捕获交通流的不同邻域之间的空间相关性;同时,通过特征交叉网络充分挖掘多个异构数据之间的耦合相关性,为预测目标序列提供有效的信息补充。在两个公开交通流数据集上的实验结果表明:在PeMSD8数据集上,与ASTGCN(Attention based Spatial-Temporal Graph Convolutional Network)模型相比,FF-GAT模型的均方根误差(RMSE)降低了3.4%;与GCN-GAN(Graph Convolutional Network and Generative Adversarial Network)模型相比,FF-GAT模型的RMSE降低了3.1%。可见,FF-GAT模型能够通过特征融合有效提高预测精度。