摘要
本文提出一种基于压缩感知的轨道结构故障模式识别方法。该方法通过设计重构信号的稀疏基与测量矩阵,将原始振动信号稀疏重构,解决了轨道振动信号在设计分类器时会出现"过拟合"的问题。通过构造11个特征征兆指标,研究重构后的数据特征征兆指标分布规律,解决了数据集维度高的问题。将特征征兆指标两两组合,结合密度聚类算法,成功区分轨道结构正常工况、道床板结工况、道床翻浆工况和轨枕空吊工况。利用归一化互信息(NMI)指标评价密度聚类结果有效性。算例表明,该方法实现了大量样本下轨道基础结构不同故障类型的特征征兆指标提取与故障模式识别。本文所提方法能够有效识别轨道结构故障,为轨道结构故障智能诊断与剩余寿命预测奠定基础。
- 单位