摘要

发酵过程通常采用流加补料操作,无稳态工作点、非线性强,且重要生物量往往无法在线测量。本文提出了一种适用于非线性多输入多输出的发酵过程在线建模方法:关键核网络(key kernelnetwork,KKN)。结合过程的先验知识给出控制模型关键节点加入的准则,使其能自适应调整模型的复杂度,以提高建模的精度和速度,并给出了关键节点增加时KKN模型的在线递推形式。将KKN应用于青霉素发酵过程的在线建模,研究表明,KKN能同时快速、准确地预报菌体和产物浓度,且随着批次的增加,过程信息不断得到积累,模型精度逐渐提高。

  • 单位
    工业控制技术国家重点实验室; 浙江大学

全文