摘要

针对现有大多数兴趣点推荐算法都存在签到数据稀疏、社交关系难以获取、用户个性难以考虑等问题,文中提出融合地理信息、种类信息与隐式社交关系的兴趣点推荐算法.首先考虑用户签到种类信息,同时分解用户签到地点矩阵和用户签到种类矩阵,减小签到数据稀疏带来的影响.再在显式社交关系的基础上,使用信息熵的方法度量用户的隐式社交关系,缓解社交网络稀疏的问题,并通过正则化的方法在矩阵分解模型中加入该隐式社交关系.最后,使用自适应核密度估计方法个性化建模地理信息对用户签到行为的影响,提高推荐的准确性.在Foursquare、Yelp数据集上的实验验证文中算法的有效性.

全文