摘要
为了提高超级电容器剩余使用寿命的预测精度,本文提出了一种贝叶斯优化与双向长短时记忆神经网络结合的预测模型(BO-BiLSTM),利用长滑动窗口处理容量数据来提高模型对容量衰退趋势的学习能力,达到对超级电容器剩余寿命精确预测的目的。通过对输入特征的研究和对比,选定了容量和循环数作为模型的输入,随后对滑窗大小、模型步长进行研究,发现长滑窗是模型成功的关键因素。实验模型的精度可以达到AEP=1.02%、RMSE=2.57%。在使用贝叶斯优化算法优化模型参数后,最终预测精度可以达到AEP=0.59%、RMSE=2.16%,具有较高的预测精度。
- 单位