摘要
针对传统视网膜血管分割网络随着网络深度加深导致微小特征信息丢失,网络分割灵敏度低的问题,提出了一种有别于传统对称编码-解码模块的非对称视网膜血管分割结构;网络权重参数量为7.2 MB,以残差注意力模块和多尺度空洞卷积模块作为基础特征提取模块,特征图的最大通道层数只有64层,特征图尺寸减半和反卷积操作都只有两次,能够减少特征图尺寸变化带来的信息丢失现象;文章所提方法在DRIVE和CHASE-DB1数据集上进行测试的准确性分别为96.85%和97.39%,灵敏度分别为84.03%和86.50%,特异性分别为98.08%和98.12%,AUC分别为98.63%和98.99%。
- 单位