摘要

针对用户评分数据稀疏性和项目最近邻寻找的不准确性问题,提出了一种项目子相似度融合的协同过滤推荐算法.该算法根据目标用户每一属性取值,选取与该属性值一致的用户作为用户子空间,并在此空间上计算目标项目与其他项目之间的相似度(称其为项目子相似度).在此基础上,以项目子相似度为依据选取目标项目的 K最近邻,计算其预测评分;最后对用户不同属性上的预测评分进行加权求和,得到目标项目的最终评分.实验结果表明,该算法能准确地选取目标项目的最近邻,明显改善了推荐质量.

  • 单位
    四川外国语大学重庆南方翻译学院