提出了一种通信装备故障预测的智能算法.该方法将粒子群算法(PSO)和最小二乘支持向量机(LS-SVM)算法相结合,采用PSO算法优化LS-SVM的参数,克服了人为参数选择的盲目性,在全局优化与收敛速度方面具有较大优势.仿真实验表明,相比BP神经网络、未经优化的支持向量机(SVM)和LS-SVM模型,经PSO算法优化后的LS-SVM有更高的预测精度和运算速度,具有较好的有效性和可行性.