摘要

近年来,幽默识别逐渐成为自然语言处理领域的热点研究之一。已有的研究多聚焦于文本上的幽默识别,在多模态数据上开展此任务的研究相对较少,现有方法在学习模态间交互信息上存在不足。该文提出了基于注意力机制的模态融合模型,首先对单模态上下文进行独立编码,得到单一模态的特征向量;然后将注意力机制作用于两种模态的特征序列,使用层级注意力结构捕获多模态信息在段落上下文中的关联与交互。该文在UR-FUNNY公开数据集上进行了实验,相比之前最优结果在精确率上提升了1.37%。实验表明,该文提出的模型能很好地对多模态上下文进行建模,引入多模态交互信息和段落上下文信息可提高幽默识别的性能。