摘要
人工蜂群算法作为一种新兴的群体智能算法,在解决复杂连续问题时表现突出。但是由于算法本身内在运行机制的原因,算法在搜索上表现出优异的性能,却疏于开发。为了平衡搜索和开发二者之间的矛盾,提出了一种基于遗传模型改进的人工蜂群算法,并成功运用到了阵列综合领域。算法先将全局最优解引入邻域搜索过程,指导蜂群寻找最佳蜜源,加速算法收敛。为了避免人工蜂群算法陷入局部最优,需要提高其开发能力,通过借鉴遗传算法中的进化机制,建立了遗传模型,对采取最佳保留后的蜜源进行遗传操作,丰富蜜源的多样性。在一组广泛使用的数值函数上对改进人工蜂群算法进行了测试,实验数据表明,该算法相较于其他算法具有很强的竞争力。将该算法运用于线性阵列的稀疏优化,旨在降低阵列的峰值旁瓣电平,在同样的阵列约束下与其他算法进行了优化对比,仿真结果进一步证明了算法的有效性。
-
单位信息工程大学; 中国科学院武汉文献情报中心