摘要

可靠的区域出行需求预测能够为交通资源的调度和规划提供合理有效的建议。但是,出行预测是一个非常具有挑战性的问题,面临海量的时空大数据建模问题,如何有效地提取时空大数据中的空间特征和时间特征,成为当前城市计算的研究热点。文中提出了一种基于3D卷积和编码-解码注意力机制的需求预测模型(3D Convolution and Encoder-Decoder Attention Demand Forecasting, 3D-EDADF),用于同时预测城市区域的出行需求流入量和流出量。3D-EDADF模型首先利用3D卷积来提取时空数据的时空相关性,然后使用LSTM编码解码来对时间依赖性进行捕获,并结合注意力机制来描述流入流出的差异性。3D-EDADF模型对临近依赖性、日常依赖性和周期依赖性这3种时间依赖特征进行混合建模,然后将它们的多维特征进行加权融合得到最终的预测结果。采用真实的出行需求数据集进行了大量的实验,结果表明,与基准模型相比,3D-EDADF模型的整体预测误差较低,具有较好的预测性能。