摘要
基于深度学习的裂纹检测方法严重依赖大量的像素级标注信息,为此提出一种基于半监督学习的裂纹检测方法。该方法将多尺度模块引入到裂纹检测的网络模型中,仅利用小部分的像素级标注数据进行全监督训练。对于无标签数据,融合多种显著性区域检测方法生成伪标签,可以减少对像素级标注信息的依赖。在裂纹数据集上对改进网络进行实验验证,并与常用语义分割网络和弱监督实验基准从主观评价、精度、召回率和F1-score的角度进行比较。实验结果表明,改进网络可以有效提升裂纹的识别准确率,提出的半监督训练策略在仅需6.25%像素级标注信息的情况下,能够取得与全监督方法相当的识别精度和召回率。
- 单位