摘要

当前网络入侵检测大多使用人工特征,但是人工特征往往不能适应新型攻击,重新设计人工特征又需要专家知识。对此,提出了一种算法,该算法从网络流量数据中提取会话作为样本,并将样本送入两个神经网络,会话的一系列有时间顺序的数据包视为一维序列送入门控循环单元,融合会话的一系列数据包视为二维图像送入卷积神经网络。分别在两个网络提取特征,最后融合这两个特征送入全连接网络执行入侵检测。所提算法同时关注了会话的时序信息和整体空间信息,自动从流量数据中学习特征。使用CICIDS-2018网络流量数据进行实验,实验表明该算法识别僵尸网络、分布式拒绝服务攻击的效果优于人工特征。