概率神经网络在盐水水淹层识别中的应用

作者:李健; 杨明任; 杜玉山; 申辉林; 刘丽; 孙启鹏
来源:油气地质与采收率, 2022, 29(06): 121-129.
DOI:10.13673/j.cnki.cn37-1359/te.202111037

摘要

埕岛油田油层的水淹类型主要是盐水水淹,地层电阻率随水淹程度增强呈现单调递减的特征,但地层电阻率递减量与水淹程度关系极其复杂,至今还没有有效识别水淹层及其水淹程度的方法。为此,提出了基于概率神经网络的水淹层预测模型,首先结合埕岛油田实际测井和测试结论将水淹程度划分为未水淹、弱水淹、中水淹、强水淹和特强水淹5个水淹级别,并进行测井特征参数与水淹程度相关性分析,依此优选能更好反映水淹程度的测井特征参数;其次,利用提取的测井特征参数与测试结论建立靶区概率神经网络模型学习样本库;最后,利用概率神经网络对判识样本进行水淹层预测,并用当前深度学习分类效果较好的Adaboost算法作对比分析。结果显示:概率神经网络水淹层预测精度提升了10%,有效地提高了盐水水淹层的识别精度。