摘要

目前信用卡套现手段复杂多变、虚假交易形态层出不穷,在仅有账户级套现标签数据的基础上,信用卡套现管理面临着与客户交互过程难以获取其真实交易情况的业务痛点。为了探究一种精准的信用卡虚假交易监管方法,以商业银行信用卡系统的套现账户交易标签数据为研究对象,建立了基于PUlearning(positive-unlabeledlearning)的信用卡单笔交易安全识别模型。所提模型在样本数据标注中引入了间谍(Spy)机制,随机抽取高可靠套现交易正样本100万笔及待标注的交易样本130万笔,借助学习器预测结果分布对难以判别的非套现交易负样本进行标注,以获取相对可靠的负样本标签120万笔。基于上述正样本及标注得到的负样本数据,构建了信用卡客户属性信息、额度使用情况及交易偏好特征等120个候选变量,通过变量重要性筛选得到入模变量近50个,利用XGBoost二分类算法进行模型开发预测。结果显示,所提模型对信用卡套现虚假交易的识别准确率为94.20%,群体稳定性指标(PSI)为0.10%,表明基于PUlearning的单笔交易安全识别模型能够实现对信用卡虚假交易的有效监测。该研究改进了机器学习二分类算法在难以获取高精度样本标签数据场景下的模型判别性能,为商业银行信用卡系统交易安全监控提供了新方法。