摘要
耐久度是制约大规模应用的主要障碍之一,性能退化预测技术可以有效提高质子交换膜燃料电池的耐久度。本文提出了一种结合小波阈值去噪方法的正则化堆叠长短期记忆网络的性能退化预测方法。通过小波阈值去噪法,获得消除噪声和尖峰后的平滑数据。针对退化数据不确定性和高度非线性导致的特征难以提取问题,引入了正则化堆叠长短期记忆网络模型,该模型通过引入参数优化算法有效避免了过拟合风险,提高了预测精度和可靠性。为验证该方法的有效性,采用两种不同工况下的质子交换膜燃料电池老化数据进行验证,验证结果表明,所提方法在稳态工况下的最大误差为0.0163V,误差区间在0.5%以内;动态工况下的最大误差为0.0064V,误差区间在0.2%以内。
- 单位