摘要
为了更加精确地识别混凝土表观病害,首先收集了包含混凝土一般性病害、风化、露筋和裂缝四种表观病害的图片,利用图像处理技术对图像集进行了扩充;然后建立了深度残差网络模型,得到了混凝土四种表观病害的分类器;最后通过迁移学习对残差网络模型进行优化,得到最优分类结果.结果表明:该基于深度学习的混凝土表观病害分类器可以针对混凝土单个病害图像进行智能分类,经过迁移学习的优化,准确率达到了91.3%,对混凝土破损露筋病害的识别准确度达到了97.6%,可以满足实际工程中混凝土表观病害智能检测的需要.
- 单位