摘要
【目的】研究苹果损伤高光谱特征,建立基于高光谱成像的苹果损伤区域最佳分类模型,为实时、快速、准确地识别苹果损伤提供重要依据。【方法】以北京平谷区收集的苹果样品为研究对象,利用高光谱图像技术检测水果表面机械损伤。利用390~1 000 nm范围的高光谱图像(HSI)数据,通过比值光谱分析损伤与正常感兴趣区域(ROI)的光谱响应特性,筛选特征波段,并构建较好地突出损伤区域特征的3种类型光谱指数:归一化光谱指数(NDSI)、比值光谱指数(RSI)和差值光谱指数(DSI)。在此基础上,优选提取损伤区域能力较强的光谱指数,利用迭代自组织数据分析(ISODATA)无监督据聚类算法提取苹果损伤区域。【结果】当苹果表面受到损伤时,光谱反射率变化显著。波段优化后发现,528、676 nm的反射率可以有效识别异常区域。基于选定的特征波段,构建苹果损伤检测的识别光谱指数,包括NDSI、RSI和DSI。光谱指数图像的像素值分析发现,损伤区域特征与正常区域特征在各光谱指数(SI)增强图像中区分明显。两类图像特征的NDSI像素平均值相差最大、达到0.629,表明建立的NDSI对损伤区域及正常区域特征具有较强的区分能力。利用无监督分类方法 ISODATA分类,验证了光谱特征指数在检测苹果损伤方面具有较高的特异性,对苹果损伤的检测正确率达到92.50%。【结论】研究结果适用于苹果损伤的实时快速检测,为苹果的精准管理生产提供技术基础与参考。
- 单位