摘要
将二氧化碳有效地转化为高附加值化学品是人类的梦想,尤其是通过光电催化实现该过程更加令人期待.本文报道了一种新的人工光合成体系,它是由金属卟啉配合物修饰的二氧化钛光电阴极以及羟基氧化铁和羟基氧化镍修饰的钒酸祕光电阳极构成,电解液是0.1 M碳酸氢钠水溶液.该体系在有硅太阳电池供电和一个标准太阳下工作.在外加电压为-0.6V时,甲醇是光电池的唯一产物,同时放出氧气;生成甲醇的速率是55.5μM h-1 cm-2.当外加电压大于-0.75 V时,光电催化电池有氢气生成.卟啉和金属卟啉按照文献合成并命名为Dx,即D1(meso-tetra-p-carboxyphenylporphyrin),D2 (CoTCPP),D3(NiTCPP),D4 (CuTCPP),和D5 (PdTCPP).制备电极时,首先将P25粉涂覆在FTO玻璃上,然后经胺丙基三乙基硅烷(APTES)修饰,再与Dx反应生成酰胺键,从而实现卟啉染料与TiO2半导体材料的共价键键合,制备的系列电极记为Dx@TiO2.对卟啉和金属卟啉进行了紫外吸收、发射光谱(PL)、核磁共振和电化学循环伏安测试等检测,以及简单的DFT计算.对制备的光电阴极进行了红外光谱、固体紫外和电化学交流阻抗测试,计算了电极的Mott-Schottky曲线,得到了电极材料的平带电位,对于n型半导体,一般认为是近似的导带电位(CB).所有电极的CB电位均高于-0.56 V,高于甲醇生成需要的电位-0.38 V.经过叶啉修饰的电极材料,其能带结构发生了根本变化,由TiO2锐钛矿的3.2 eV降低到了2.37-2.73 eV. SEM及其元素分布彩色图表明所需元素都均匀分布在电极表面.电化学线性伏安扫描图表明,在光照条件下电流的提升是能带修饰和降低的结果.最好的光电阴极在光电还原电池D3@TiO2|NaHCO3|BiVO4中,-0.6 V条件下,一个标准太阳光照射2 h,生成甲醇的光量子效率用500 nm光子估算为0.92%,达到了自然界植物光合作用效率的2倍.循环实验表明,光电阴极经过4次2 h照射后仍有约50%的催化效力,性能的减弱主要来自卟啉作为光敏剂的消耗.在这一新的光电催化二氧化碳还原系统中,由于卟啉修饰的TiO2半导体材料表面构筑了合适的3D结构空间、敏化剂和催化剂,形成了对天然植物细胞和Calvin循环的有效模拟,因而提高了人工光合成的效率.同位素标记实验(13CO2)证实了产物甲醇来自CO2气体.与文献报道的卟啉催化体系相比,本文新催化体系的主要产物是甲醇而不是CO,而且新催化体系的效率是文献报道的80-500倍.
-
单位兰州大学; 中国科学院山西煤炭化学研究所; 功能有机分子化学国家重点实验室; 煤转化国家重点实验室; 化学化工学院