摘要

针对在低照度环境下多尺度行人目标检测准确率低的问题,本文提出了一种基于改进YOLOv5s的行人目标检测模型BE-YOLOv5s。首先,在YOLOv5s的主干网络中融入ECA通道注意力机制,突出目标特征同时抑制低照度环境的干扰;其次,引入加权双向特征金字塔BIFPN,增强特征融合,提升行人检测精度;最后,采用可见光图像和红外图像这两组数据进行对比研究。实验结果表明,改进后的BE-YOLOv5s模型在两种数据集上的平均精度均值mAP均有所提升,同时保持了原算法的高实时性。