摘要
针对目前图像超分辨率重建算法中因退化过程过于单一所导致的网络性能下降和模型泛化能力差等问题,本文提出了多尺度残差和二阶退化的图像超分辨率重建算法。该算法首先设计了二阶退化模型,在每一阶退化过程中加入随机的下采样、模糊、噪声和压缩操作以保证退化模型的复杂性和易用性。其次提出了多尺度感受野残差密集块,利用多分支结构和空洞卷积来增强网络的特征提取能力。最后改进了上采样方式,交替使用双线性插值和亚像素卷积上采样算法,以平衡算法性能和时间复杂度。实验结果表明,该算法在三个基准数据集上的自然图像质量评估指标平均下降了1.15,且重建图像视觉观感更好,纹理细节、亮度和饱和度更加准确。
- 单位