摘要

为有效预测智能制造模式下的不确定性需求,提出自回归移动平均模型ARIMA和改进BP神经网络的组合模型,对预测数据中包含线性规律的Lt以及非线性规律的εt进行模拟和分析,以解决预测有效性和精度问题.通过数据样本构建,对ARIMA模型结构进行辨识,确定p,d,q参数,并对模型进行诊断和检验;在此基础上进行需求数据一次预测;通过连接权值的修正降低BP神经网络学习误差,并对一次预测结果与原需求数据样本存在的误差进行二次预测.实例数据分析表明:组合模型的预测精度较ARIMA模型有显著提高,因此组合预测模型在预测效果上具有合理性和有效性.