摘要
针对基于深度特征的目标跟踪算法在目标快速运动、长时间遮挡容易导致跟踪漂移的问题,提出了一种结合重检测机制的多卷积层特征响应跟踪算法。首先基于图像分块的混合高斯模型检测出目标区域,其次多卷积层根据加权梯度的类激活映射提取目标深度特征图,并训练出相互独立的相关滤波器,然后融合底层空间特征和高层语义特征的卷积层滤波器得到目标响应位置,再由重检测机制约束项平滑输出响应值,从而构建出强跟踪器,最后自适应地更新模型参数和权重系数,避免模型中参数过拟合,达到实时跟踪效果。实验结果表明,该算法在目标严重形变、快速运动、长时期遮挡等复杂情景下,跟踪结果具有很高的精确度和成功率。
-
单位昆明理工大学; 自动化学院