摘要

轴承故障诊断普遍存在需建立不同模型以适应变工况的问题,故提出一种谱质心迁移学习模型,通过将源工况领域迁移至目标工况领域减少后者的建模代价,并增强模型通用性。首先计算两工况领域间频谱相似度(FSSM)并排序选择近距离源工况领域为初始训练集。其次在迭代过程中剔除与训练集谱质心均值距离较远的样本,并加入同数量目标工况领域无标签样本,直至两者谱质心均值距离一致,模型故障类别取决于支持向量机(SVM)和逻辑回归(LR)基分类器的输出。Spectra Quest齿轮传动系统试验结果表明,转速负载发生变化时,该模型诊断性能优于非迁移模型,且能够根据替换样本数、精度、频谱相似度、耗时等指标评估源工况领域质量,因此具有解决变工况轴承故障诊断问题的潜在价值。

全文