摘要

本发明公开了一种基于非下采样轮廓波变换和卷积神经网络的X光图像骨龄评估方法,包括:首先对尺寸归一化后的X光图像进行非下采样轮廓波变换,得到多个尺度下的高频方向子带和一幅低频系数图,然后将它们输入到一个多通道卷积神经网络中,得到不同尺度下的特征图,最后将这些特征图层叠在一起后输入到一个由若干全连接层构成的回归网络中得到骨龄预测值;上述过程以一个端到端的网络结构实现,并使用误差反向传播机制实现网络训练。本发明方法利用非下采样轮廓波变换对原始空间域图像进行特征预提取和分离,能够克服现有深度学习方法在小规模数据集上网络训练的困难,提升网络的泛化性能,从而为临床应用提供更加准确可靠的评估方法。