摘要

针对同时定位与建图(SLAM)中存在定位精度不足、匹配特征点误差累积和特征匹配时间较长,提出了一种融合改进RANSAC光流法的优化算法。该方法基于传统RANSAC算法,加入最小二乘法对模型进行迭代优化来估计最优模型,对光流法的误匹配点进行剔除,大量减少图像误匹配特征点;把融合改进后的RANSAC光流法与特征点通过卡尔曼滤波进行融合,最后使用改进后的算法在公开的EuRoC MAV数据集中进行SLAM定位精度实验。实验结果表明:该改进算法能够有效减小光流法特征匹配的误差,从而提高无人机视觉SLAM的定位精度。

全文