摘要

In-situ Li isotope geochemistry has been better utilized to trace many complex processes including fractional crystallization, crust contamination and melt/fluid-mineral reaction during the petrogenesis and mineralization of mafic-ultramafic rocks. This study summarizes the major progresses in Li isotope geochemistry during petrogenesis and mineralization of mafic-ultramafic intrusions based on case studies. Firstly, the Li isotope study of Yellow Hill Alaskan-type intrusion reveal Li isotope fractionation during magma differentiation. Secondly, the studies on ophiolites from Turkey and Tibet indicate that Li isotope systematics have potential to constrain genesis of ophiolitic mantle section and evolution of chromitites. Thirdly, the Li isotope study of the ultramafic zone of the Stillwater complex demonstrates that hydrous fluids constrained mineral composition and acted as a critical medium of chemical exchange between minerals in the chromitites. Finally, Li isotope fractionation behavior in the formation of magmatic Ni-Cu sulfide deposits has been investigated.