摘要

低剂量CT(LDCT)图像可大幅降低X射线辐射剂量,但存在大量噪声影响医生诊断。深度图像先验(DIP)是用随机张量作为神经网络的输入图像,以单张LDCT图像为目标进行迭代的无监督深度学习算法。但DIP方法需经过上千次的网络迭代才能得到最佳降噪结果,导致该方法运行速度过慢。因此,该文提出一种用于LDCT降噪的目标偏移DIP加速算法,旨在保持降噪图像质量的基础上提高运行速度。根据一个器官(如肺部)LDCT切片序列图像的相似性,该算法将以各切片分别作为目标图像对应的相互独立的网络迭代通过继承参数关联起来,在上一切片对应的网络参数的基础上更新当前切片对应的网络参数,并将当前切片对应的网络参数作为下一切片对应的网络迭代的基础;由于DIP网络的输入是固定的随机张量,与目标图像差距较大,该文利用传统降噪模型预处理后的LDCT图像作为网络输入,进一步提高网络迭代速度。实验表明,不使用传统模型预处理时,与原DIP网络运行速度相比,该文所提出的加速算法可以将迭代速度提高10.45%;当使用经过相对全变分(RTV)模型预处理的LDCT作为网络输入时,图像峰值信噪比不仅可以达到29.13,而且总迭代速度可以提高94.31%。综上所述,该文算法可在保持DIP降噪效果的基础上,大幅度提高运行速度,特别是RTV模型预处理后的CT图像作为网络输入时,对提高运行速度的效果更加明显。