摘要

针对当前基于卷积神经网络的低光照图像增强算法(CycleGAN,Retinex-Net等)存在模型参数过大、内存消耗高、图像复原质量不佳等问题,在轻量级算法IAT基础上,提出了融合半波注意力模块的低光照图像增强算法HBTNet。为了改善网络频繁卷积造成的空间信息损失,在网络中引入半波注意力模块,可有效获得小波域的特性,丰富上下文信息,提高特征提取能力。通过引入MS-SSIM损失函数用来保存图像的边缘和细节信息,提升图像恢复的质量。实验结果表明,在LOL数据集上HBTNet相较于IAT算法PSNR提升了2.69%,SSIM提升了5.56%。HBTNet算法的模型参数量仅为0.11M,可以满足终端用户实时性要求。